Phosphorylation of Focal Adhesion Kinase Tenascin-C Promotes Microvascular Cell Migration and Updated Version
نویسندگان
چکیده
Enhanced expression of tenascin-C (TN-C) at the invasive edges of glioblastoma multiforme in close association with vascular sprouts, suggests a role for TN-C in microvascular cell migration. To test this hypothesis, we studied the migration of endothelial cells in vitro. In an aggregate migration assay, bovine retinal endothelial cells (BRECs) and human umbilical vein endothelial cells spread and migrated similarly on TN-C or fibronectin (FN). In contrast, U251 MG glioma cells migrated less on TN-C than on FN. Morphological features of U251 MG glioma cells on TN-C included poor cell spreading and short processes. In contrast, on FN, U251 MG glioma cells spread and exhibited long radial processes. Using a transmembrane migration assay, we observed that BREC adhesion was similar on TN-C or FN, whereas U251 MG glioma cells adhered better to FN than to TN-C. In addition, BRECs migrated more across the membrane toward regions coated with TN-C than FN, and conversely, U251 MG glioma cells migrated more toward FN than TN-C. Migration of endothelial and glioma cells toward TN-C or FN occurred in a dosedependent manner and was strongly dependent on cell adhesion. In this assay, ultrastructural study revealed the migrating phenotype of the endothelial cells through the micropores of the membrane and their spread morphology on TN-C. Moreover, in situ hybridization revealed specific expression of TN-C in migrating microvascular cells in a cerebral microvascular ring assay. Finally in a phosphorylation assay, TN-C enhanced focal adhesion kinase phosphorylation of BRECs, but not of U251 MG glioma cells, and FN enhanced focal adhesion kinase phosphorylation of both BRECs and U251 MG cells. The expression of TN-C by migrating endothelial cells and the promotion of endothelial cell adhesion and migration by TN-C suggest a potential role for TN-C in pathological angiogenesis.
منابع مشابه
Tenascin-C promotes microvascular cell migration and phosphorylation of focal adhesion kinase.
Enhanced expression of tenascin-C (TN-C) at the invasive edges of glioblastoma multiforme in close association with vascular sprouts, suggests a role for TN-C in microvascular cell migration. To test this hypothesis, we studied the migration of endothelial cells in vitro. In an aggregate migration assay, bovine retinal endothelial cells (BRECs) and human umbilical vein endothelial cells spread ...
متن کاملTenascin-C modulates matrix contraction via focal adhesion kinase- and Rho-mediated signaling pathways.
A provisional matrix consisting of fibrin and fibronectin (FN) is deposited at sites of tissue damage and repair. This matrix serves as a scaffold for fibroblast migration into the wound where these cells deposit new matrix to replace lost or damaged tissue and eventually contract the matrix to bring the margins of the wound together. Tenascin-C is expressed transiently during wound repair in t...
متن کاملCombined lysophosphatidic acid/platelet-derived growth factor signaling triggers glioma cell migration in a tenascin-C microenvironment.
The antiadhesive extracellular matrix molecule tenascin-C abrogates cell spreading on fibronectin through competitive inhibition of syndecan-4, thereby preventing focal adhesion kinase (FAK) activation and triggering enhanced proteolytic degradation of both RhoA and tropomyosin 1 (TM1). Here, we show that simultaneous signaling by lysophosphatidic acid (LPA) and platelet-derived growth factor (...
متن کاملHydrogen peroxide activates focal adhesion kinase and c-Src by a phosphatidylinositol 3 kinase-dependent mechanism and promotes cell migration in Caco-2 cell monolayers.
Recent studies showed that c-Src and phosphatidylinositol 3 (PI3) kinase mediate the oxidative stress-induced disruption of tight junctions in Caco-2 cell monolayers. The present study evaluated the roles of PI3 kinase and Src kinase in the oxidative stress-induced activation of focal adhesion kinase (FAK) and acceleration of cell migration. Oxidative stress, induced by xanthine and xanthine ox...
متن کاملRac1-Dependent Phosphorylation and Focal Adhesion Recruitment of Myosin IIA Regulates Migration and Mechanosensing
BACKGROUND Cell migration requires coordinated formation of focal adhesions (FAs) and assembly and contraction of the actin cytoskeleton. Nonmuscle myosin II (MII) is a critical mediator of contractility and FA dynamics in cell migration. Signaling downstream of the small GTPase Rac1 also regulates FA and actin dynamics, but its role in regulation of MII during migration is less clear. RESULT...
متن کامل